
Bayesian Analysis of Multinomial 
N-mixture models in BUGS 



Multinomial N-mixture in BUGS 

• Bayesian analysis of multinomial observation models does not 
pose any novel technical difficulty. 

• WinBUGS  JAGS (and other BUGS) have a multinomial 
distribution function. 

• In principle we just specify the multinomial/Poisson model 
directly: 
 

y[i,]<-c(y[i,],NA)   # missing value for "not captured" 

 

# Then, in WinBUGS, do this: 

y[i,] ~ dmulti( probs[i,], N[i] ) 

N[i] ~ dpois(lambda[i]) 

 



Multinomial N-mixture in BUGS 

 
 

y[i,]<-c(y[i,],NA)   # missing value for "not captured" 

 

# Then, in WinBUGS, do this: 

y[i,] ~ dmulti( probs[i,], N[i] ) 

N[i] ~ dpois(lambda[i]) 

 

However, this construction doesn't work (in WinBUGS ). Cannot 
have “random” sample size in multinomial distribution. (not so 
Binomial!) 
  

  



Approaches to Bayesian analysis 

We have 3 options for analysis in BUGS: 

 

(1) Multinomial/Poisson mixture has Poisson marginals. Use the 

  Poisson marginal. (this is too easy!). 

 

(2) Can use a “data augmentation'' trick (Converse and Royle 

  2012) with individual-level encounter histories. 

 

(3) Can express the model in terms of the conditional  

  multinomial observation model. i.e., condition on 𝑛𝑖 = number 

  of individuals captured at site 𝑖 -- the “3 part model”. 

  

  

 

 

 



Topics in Bayesian analysis 

• 3-part model 

• Goodness-of-fit 

• Model selection 

• Poisson model 

• Poisson model with random effects 

• Data Augmentation 



The 3-part (conditional multinomial)  
model 

Statistically equivalent formulation of the 
multinomial N-mixture – a reparameterization:  

 

 1. 𝒚𝑖| 𝑛𝑖~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝝅𝑖
𝑐) 

 2. 𝑛𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁𝑖 , 1 − 𝜋0  

 3. 𝑁𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆𝑖  

   where 

   𝝅𝑖
𝑐=

𝜋ℎ

1−𝜋0
 

 

  

 

 

 



 model { 

# Prior distributions 

p0 ~ dunif(0,1) 

alpha0 <- logit(p0) 

alpha1 ~ dnorm(0, 0.01) 

beta0 ~ dnorm(0, 0.01) 

beta1 ~ dnorm(0, 0.01) 

beta2 ~ dnorm(0, 0.01) 

beta3 ~ dnorm(0, 0.01) 

 

for(i in 1:M){ # Loop over sites 

   # Conditional multinomial cell probabilities 

   pi[i,1] <- p[i] 

   pi[i,2] <- p[i]*(1-p[i]) 

   pi[i,3] <- p[i]*(1-p[i])*(1-p[i]) 

   pi[i,4] <- p[i]*(1-p[i])*(1-p[i])*(1-p[i]) 

   pi0[i] <- 1 - (pi[i,1] + pi[i,2] + pi[i,3] + pi[i,4]) 

   pcap[i] <- 1 - pi0[i] 

   for(j in 1:4){ 

      pic[i,j] <- pi[i,j] / pcap[i] 

   } 

 # logit-linear model for detection: understory cover effect 

   logit(p[i]) <- alpha0 + alpha1 * X[i,1] 

 

   

 # Model specification, three parts: 

 y[i,1:4] ~ dmulti(pic[i,1:4], n[i]) # component 1 uses the  

 #                                             conditional  cell probabilities 

 n[i] ~ dbin(pcap[i], N[i])    # component 2 is a model 

 #                                         for the observed sample size  

 N[i] ~ dpois(lambda[i])    # part 3 is the process model 

 

# log-linear model for abundance: UFC + TRBA + UFC:TRBA 

 log(lambda[i])<- beta0 + beta1*X[i,1] + beta2*X[i,2] + 
beta3*X[i,2]*X[i,1] 

} 

} 

 Have to write out 
the cell 
probabilities 
explicitly 



Goodness-of-fit Using Bayesian p-values 

• It is natural to think of “overall fit” as having two   
components: How well does the encounter model fit? 
How well does the abundance model fit? 

• Can we evaluate them independently?  The 3-part 
model leads to a natural formulation of this dual fit 
assessment strategy. 

– Fit of multinomial model conditional on 𝑛𝑖 . 

– Fit of the model for 𝑛 – should be   sensitive to wrong 
model for  because 𝐸 𝑛𝑖 = 𝜆𝑖𝑝𝑐𝑎𝑝 contains  the variation 

in 𝑁𝑖  (and spatial variation in 𝑝) 

  

 

 

 

 

 

  

 

 

 



Implementation of 2-part GoF idea 
 

for(i in 1:nsites){ 

 

 ncap.fit[i] ~ dbin(pcap[i],N[i]) 

 y.fit[i,1:4] ~ dmulti(muc[i,1:4],ncap[i])    

 for(t in 1:4){ 

   e1[i,t]<- muc[i,t]*ncap[i]  # Expected value 

   resid1[i,t]<- pow(pow(y[i,t],0.5)-pow(e1[i,t],0.5),2) 

   resid1.fit[i,t]<- pow(pow(y.fit[i,t],0.5) - pow(e1[i,t],0.5),2) 

   } 

  e2[i]<- pcap[i]*lambda[i]    # Expected value  

  resid2[i]<- pow(  pow(ncap[i],0.5) - pow(e2[i],0.5),2) 

  resid2.fit[i]<- pow( pow(ncap.fit[i],0.5) - pow(e2[i],0.5),2) 

} 

fit1.data<- sum(resid1[,]) 

fit1.post<- sum(resid1.fit[,]) 

fit2.data<- sum(resid2[]) 

fit2.post<- sum(resid2.fit[]) 

  

 

  

 

 



Goodness-of-fit Using Bayesian p-values 

   

 

> mean(out$sims.list$fit1.post>out$sims.list$fit1.data) 

[1] 0.7076667 

 

> mean(out$sims.list$fit2.post>out$sims.list$fit2.data) 

[1] 0.4556667 

  

   

No lack of fit is indicated…????? 
 



Goodness-of-fit: Research Question 

   

The power of any particular fit statistic to any particular 
departure from the model is unknown and no studies 
have been published. 

 
 

 



Model Selection in BUGS: Computing 
posterior model probabilities 

 Basic idea:  Expand model to include a set of binary indicator variables 𝑤𝑘 = 1 if 
variable 𝑘 is in the model (Kuo and Mallick 1998) 

 

Model selection  ≡ estimating Pr (𝑤𝑘 = 1).  (R&D Book, sec. 3.4.3) 

 

Expanded linear predictor: 
log 𝜆𝑖 = 𝛽0 + 𝑤1𝛽1𝑥𝑖1 + 𝑤2𝛽2𝑥𝑖2 + 𝑤1𝑤2𝑤3𝑥𝑖1𝑥𝑖2 

   𝑤1~ 𝐵𝑒𝑟𝑛 0.5  

  𝑤2~ 𝐵𝑒𝑟𝑛 0.5  

  𝑤3~ 𝐵𝑒𝑟𝑛(0.5) 

   

Models are characterized by the sequence 𝑤1, 𝑤2, 𝑤1𝑤2𝑤3  

• Estimate functions of  𝑤𝑘  e.g., Pr 𝑤𝑘 = 1  

• Sensitivity to prior.  Posterior model probabilities are sensitive to choice of prior 
distribution on 𝛽. See Link and Barker (2010).  

  



Model Selection in BUGS: Computing 
posterior model probabilities 

 model { 

beta0 ~ dnorm(0,.1) 

Beta1 ~ dnorm(0,.1) 

beta2 ~ dnorm(0,.1) 

beta3 ~ dnorm(0,.1) 

w1 ~ dbern(.5) 

w2 ~ dbern(.5) 

w3 ~ dbern(.5) 

 

p0~dunif(0,1) 

 

for(i in 1:nsites){ 

  p[i]<- p0   # could have covariates here 

  mu[i,1] <- p[i] 

  mu[i,2] <- p[i]*(1-p[i]) 

  mu[i,3] <- p[i]*(1-p[i])*(1-p[i]) 

  mu[i,4] <- p[i]*(1-p[i])*(1-p[i])*(1-p[i]) 

  pi0[i]<- 1 - mu[i,1]-mu[i,2]-mu[i,3]-mu[i,4] 

  pcap[i]<-1-pi0[i] 

  

  for(j in 1:4){ 

    muc[i,j] <- mu[i,j]/pcap[i] 

  } 

  y[i,1:4] ~ dmulti(muc[i,1:4],ncap[i]) 

  ncap[i] ~ dbin(pcap[i],N[i]) 

  N[i] ~ dpois(lambda[i]) 

  log(lambda[i])<- beta0 + w1*beta1*X[i,1] + w2*beta2*X[i,2] + w1*w2*w3*beta3*X[i,2]*X[i,1] 

}  

 

 



Model Selection in BUGS: Computing 
posterior model probabilities 

 Post-processing to obtain model frequencies -- combine the 
unique values of (𝑤1, 𝑤2, 𝑤3) into distinct models. i.e., (1,0,0),  
(0,1,0),  (1,1,0),  etc.. Note: When 𝑤3 represents an interaction 
we want to use (𝑤1, 𝑤2, 𝑤1𝑤2𝑤3) so that the model has the 
interaction only if the main effects are present.  

   
w1<-out$sims.list$w1 

w2<-out$sims.list$w2 

# new "w3" =1 only if the interaction is in the  

#    model, means w1 = 1 AND w2=1 

w3<-out$sims.list$w3 * w1 * w2 

mod<-paste(w1,w2,w3) 

  



Sensitivity to prior distributions 
   

Prior: beta  ~ dnorm(0,.1) 

> table(mod) 

mod 

0 0 0   0 1 0   1 0 0   1 1 0   1 1 1  

 2176    517     300      6       1  

 

Prior: beta ~ dnorm(0,.01) 

0 0 0   0 1 0   1 0 0   1 1 0  

 2760     154     78      8  

 

Prior: beta ~ dnorm(0,.2) 

0 0 0   0 1 0   1 0 0   1 1 0  1 1 1  

 2006     637     340     16     1  

  

  



Model selection summary 
   

Model selection based on posterior model 
probabilities, when models represent different 
fixed covariates, is easy to accomplish using 
variable weights. 

 

The prior makes a difference, so be careful.    

 

 

 

 



Poisson formulation of the model 

If 𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) then the marginal distribution 
of the data is also Poisson! 

 

    𝑦𝑖ℎ = frequency of encounter history ℎ at site 𝑖 

 
𝑦𝑖ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜋𝑖ℎ𝜆𝑖  

  

     i.e., model is just a Poisson GLM! 



model { 

# Prior distributions 

p0 ~ dunif(0,1) 

alpha0 <- logit(p0) 

alpha1 ~ dnorm(0, 0.01) 

beta0 ~ dnorm(0, 0.01) 

beta1 ~ dnorm(0, 0.01) 

beta2 ~ dnorm(0, 0.01) 

beta3 ~ dnorm(0, 0.01) 

 

for(i in 1:M){ 

   # logit-linear model for detection: understory cover effect 

   logit(p[i]) <- alpha0 + alpha1 * X[i,1] 

   # log-linear model for abundance: UFC + TRBA + UFC:TRBA 

   log(lambda[i])<- beta0 + beta1*X[i,1] + beta2*X[i,2] + beta3*X[i,2]*X[i,1] 

 

   # Poisson parameter = multinomial cellprobs x expected abundance 

   pi[i,1] <- p[i] * lambda[i] 

   pi[i,2] <- p[i] * (1-p[i]) * lambda[i] 

   pi[i,3] <- p[i] * (1-p[i]) * (1-p[i]) * lambda[i] 

   pi[i,4] <- p[i] * (1-p[i]) * (1-p[i]) * (1-p[i]) * lambda[i] 

 

   for(j in 1:4){ 

      y[i,j] ~ dpois(pi[i,j]) 

   } 

   # Generate predictions of N[i] 

   N[i] ~ dpois(lambda[i]) 

} 

 



Poisson model with random effects 

• [see R script] 



Data Augmentation (DA) 
Motivation 

•  ovenbird, ALFL, MHB data are all classical “capture-recapture” 
data/models but for those we formulated the model in terms 
of encounter frequencies for each site (a multinomial vector 
that is site specific). We modeled the latent 𝑁𝑖  variables as 
Poisson (or NB, etc..) 

 

• In those models there is no INDIVIDUAL IDENTITY (only a site 
identity) 

 

• DA gives us an alternative formulation of the model that 
preserves individual identity so that we may model individual 
effects in addition to site effects 

 

 



Data Augmentation (DA) 
Conceptual approach 

• The idea of DA is to stack all of the site-specific individual encounter history 
data sets into one large data set (the “stacked data set”) and treat the data 
set as a single capture-recapture data set. Now 𝑁 is the population size of 
the “pooled population”. That is, the population size among all sampled 
sites.  

y <- as.matrix(alfl[,c("interval1","interval2","interval3")] ) 

 head(y) 

     interval1 interval2 interval3 

[1,]         1         1         1  # Each row = individual 

[2,]         1         0         1  #   ALL SITES POOLED 

[3,]         0         1         1 

[4,]         1         1         1 

[5,]         0         1         1 

[6,]         1         0         1 

site <- as.numeric(alfl$id) 

head(site) 

[1] 1 1 2 2 2 2 

 



Data Augmentation (DA) 

Conceptual approach 
 

• What is the model for the “stacked” data set? 

 

• Main technical challenge: 𝑁 is unknown!  DA is meant 
primarily to deal with the unknown 𝑁 problem. 

 

• First we switch topics and talk about  analyzing “basic” 
capture-recapture models using DA to make the core 
methodological idea clear.  



Sampling a closed population 
A typica l  c losed 
populat ion sampling 
data  set :  

        

Ind.    | -  occasion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

 

 

 

 

 

 

 

  

Here we sampled a population of size 
𝑁 repeatedly (J= 5 times) and 
observed 𝑛 = 8 individuals. We wish 
to estimate 𝑁. How do we do that? 
 
Models M0, Mh, Mt, Mb, Mbh, Mth, 
Mbth, Individual covariate models 
Mx, etc.. 
 
This is just one “Site” (sampling of 
one population) 



If N is known, CR model is just a logistic 
regression: 

 
model { 

 

p~dunif(0,1) 

 

for (i in 1:N){ 

  for( j in 1:J){ 

     y[i,j]~dbern(p) 

   } 

  } 

 

} 

 

Bayesian analysis of closed capture-
recapture models: The basic problem of 

variable dimension data/parameters 
 
But N is not known. Conceptually we 
could just put a prior on N, e.g., N ~ 
Dunif(0, 1000), and analyze the model 
using standard methods of MCMC 
 
However, the size of the data set, N, is a 
parameter of the model so as N is 
updated in the MCMC algorithm the 
size of the data set must change. Can’t 
do this in WinBUGS/JAGS. 
 



• Prior distributions: 
 
– N ~ Dunif(0, M), for M some big number (Fixed) 

 

– p ~ uniform(0,1) 
 

• Not amenable to a naïve implementation by MCMC (esp in 
BUGs/JAGS) because N, a parameter, which is the size of 
the data set, which has to be fixed!  Also “variable 
dimension parameter space” 

 
– Therefore: 

• RJMCM/”Trans-dimensional” Gibbs sampling 
• Data augmentation <- easier, can be done in BUGS 

Bayesian analysis of closed population 
models 



• N ~ Dunif(0,M) implies a “data set” with M-n all-zero encounter 
histories.  Some of the y=0 observations correspond to real 
individuals and some of them do not.  

 
– Same as:  

• 𝑁|𝜓 ~ 𝐵𝑖𝑛 𝑀, 𝜓         ## KEY POINT! 
• 𝜓 ~ uniform(0,1) 

 
• Implementation: We add too many zeroes to the dataset – creating a 

zero-inflated version of the known-N dataset 
 

• Model for the augmented data set is a zero-inflated binomial 
 

• THIS IS AN OCCUPANCY MODEL! 
 
 

Data augmentation: Heuristic 



 Occupancy data 

Site   |- occasion -| 

 

  1       0  1  0  1  1 

  2       0  0  1  0  0 

  3       1  1  0  0  0 

  4       0  0  1  1  0  

  5       0  1  1  1  1 

  6       0  0  1  1  0 

  7       1  1  1  1  1     

  8       1  0  1  1  0 

           0  0  0  0  0   

           0  0  0  0  0    

           0  0  0  0  0    

           0  0  0  0  0    

           0  0  0  0  0    

  M     0  0  0  0  0    

 

Zeros are observed. Allocate 
zeros to “fixed” and 
“sampling” 

Heuristic development 

Closed pop.  sampling  

Ind.    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

 

 

 

 

 

 

 

Zeros  are  NOT 
observed.   How many 
“sampling” zeros  are  
there?  

 Closed pop.  +  DA 

Ind.    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

           0   0   0   0   0    

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

   M     0   0   0   0   0     

 

Bound N <= M where 
M is  f ixed.  

Treat  Model  M0 as  an 
occupancy model .   

 

 



• DA makes capture-recapture models the same as 
occupancy models.  

 

• The parameter 𝜓 replaces population size N. They 
are related as follows:  𝑁 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑀, 𝜓  

 

• Occupany model is implemented at the individual 
level by introducing latent occupancy state 
𝑧𝑖~ 𝐵𝑒𝑟𝑛 𝜓  

 

 

DA and occupancy models 



• N ~ Unif(0,M) 
•  Same as: 

– N|psi ~ Bin(M, psi)   M = fixed 
– psi ~ uniform(0,1) 

This 2-part prior implies:  N ~ Uniform(0,M) , standard distribution 
theory result 

• Same as: 
– z[i] ~ Bern(psi) for i=1,2,…,M  “data augmentation variables” 
– y[i] ~ Bern(p*z[i]) 
– psi ~ dunif(0,1)   “data augmentation parameter” 

• The augmented data create a super-population of 
individuals available to be “recruited” by the MCMC 
algorithm. 

Why can we do this? 



 

 

2 formulations of Model M0 in BUGS: 

 

 

 

 

Fit model M0 in BUGS/JAGS using DA 

 

 

 

 model {  

psi~dunif(0, 1) 

p~dunif(0,1) 

for (i  in 1:M){ 

   z[i]~dbern(psi)  

   tmp[i]<-p*z[i] 

   y[i]~dbin(tmp[i] ,K) 

     }  

N<-sum(z[1:M]) 

} 

  

 

 

model {  

psi~dunif(0, 1) 

p~dunif(0,1) 

for (i  in 1:M){ 

   z[i]~dbern(psi)  

   for(k in 1:K){  

     tmp[i,k]<-p*z[i] 

     y[i ,k]~dbin(tmp[i ,k],1) 

      }  

     }  

N<-sum(z[1:M]) 

}  

  

  

Encounter frequencies   Binary encounter events 



Data Augmentation (DA) 

Analysis of ALFL data using DA 

 

 y <- as.matrix(alfl[,c("interval1","interval2","interval3")] ) 

 head(y) 

     interval1 interval2 interval3 

[1,]         1         1         1  # Each row = individual 

[2,]         1         0         1  #   ALL SITES POOLED 

[3,]         0         1         1 

[4,]         1         1         1 

[5,]         0         1         1 

[6,]         1         0         1 

site <- as.numeric(alfl$id) 

head(site) 

[1] 1 1 2 2 2 2 

 

 



Work session 

• Analysis of the ALFL data by data 
augmentation 



DA for site-structured models 

• Change of notation!!! 

 

• If we have data classified by both site and 
individual… we need a new indexing scheme 

– 𝑖 = individual (not site) 

– 𝑠 = site  

 

 



DA for site-structured models 

• DA: The key idea of DA is to preserve an individual-level 
formulation of capture-recapture models which can be 
analyzed easily by MCMC (i.e., in BUGS).  

 

• DA: we analyze the “stacked” data set. Take the data set 
from each site and pile them up on top of each other.  

 

• We also have site-structured data.  
– Introduce an individual covariate 𝑔 𝑖  (𝑔 for “group”) which 

determines the site membership of each individual 𝑖  

– In BUGS: 𝑔 𝑖 ~ 𝑑𝑐𝑎𝑡(𝑝𝑟𝑜𝑏𝑠[ ]) 



DA for site-structured models 

• We also have site-structured data.  

– Introduce an individual covariate 𝑔 𝑖  (𝑔 for 
“group”) which determines the site membership of 
each individual 𝑖  

– In BUGS: 𝑔 𝑖 ~ 𝑑𝑐𝑎𝑡(𝑝𝑟𝑜𝑏𝑠[ ]) 

 

• When we use DA to analyze models the “site 
membership” of individuals appears as a 
categorical individual covariate 



DA for site-structured models 

• Individual 𝑠𝑖𝑡𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒:  𝑔 𝑖 ~ 𝑑𝑐𝑎𝑡(𝑝𝑟𝑜𝑏𝑠[ ]) 

 

• What is 𝑝𝑟𝑜𝑏𝑠[] ???? 

 

• Derives from the assumption for 𝑁𝑠 

 



DA for site-structured models 



The end 

 


